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ABSTRACT

This paper explores the thermodynamic properties of black holes, discussing the derivation and implica-
tions of Hawking temperature. Black holes, traditionally studied within the framework of general relativity,
exhibit thermodynamic characteristics such as entropy and temperature, which raise intriguing questions about
their microscopic and quantum nature. A key result, the Bekenstein-Hawking entropy, establishes that black
hole entropy scales with the surface area of the event horizon, rather than its volume, pointing to a fundamental
connection between entropy and geometric properties. The derivation of Hawking temperature demonstrates
how quantum effects near the event horizon lead to black hole radiation and slow evaporation. This paper pro-
vides a focused discussion on these aspects, avoiding deeper exploration of advanced topics such as black hole

microstates, holography, and quantum gravity.
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I. INTRODUCTION

Black holes are one the most mysterious objects known to ex-
ist in the universe; the nature of black holes themselves tests
our theories of gravity and quantum mechanics. Classically,
black holes are studied within the context of general relativity,
where they are defined as regions of spacetime where gravi-
tational fields are such that nothing (including matter, light
and information) can escape from its boundary (event hori-
zon). But a series of surprising discoveries over the last few
decades has uncovered the thermodynamic properties of black
holes, which requires explanations from other fields such as
statistical mechanics and quantum field theory, forcing deep
questions on the nature of entropy, information, and the fun-
damental structure of space-time.

One of the most intriguing ideas of black hole thermody-
namics is the concept of black hole entropy. In 1973, theo-
retical physicist Jacob Bekenstein discovered that black holes
have entropy|/1]l, described by the Bekenstein-Hawking en-
tropy formula. According to the formula, the entropy of a
black hole is proportional to the surface of its event hori-
zon, but not to its volume. Such area-scaling behaviour is
unusual and counter-intuitive, because for conventional ther-
modynamic systems, entropy scales with volume, reflecting
the number of microscopic configurations accessible in three-
dimensional space. The relation between area and entropy
suggests that black holes are fundamentally described by the
two-dimensional degrees of freedom of the horizon. This
raises questions of what the “microstates” of a black hole are.

Another discovery related to this concept occurred in
1974, where Stephen Hawking proved that black holes emit
radiation due to quantum effects near the event horizon. This
radiation, now called Hawking radiation, implies that black
holes have a temperature and would gradually lose mass
though “evaporation”[2]. He also proved that black holes fol-
low the laws of thermodynamics: they have a temperature in-
versely proportional to their mass. This provided not only
a deeper link between black holes and thermodynamics but
brought up the question of the black hole information para-
dox: it remains unclear how the information could be con-
served during the process of black hole evaporation.

The peculiar behaviour of black hole entropy has inspired
broader theories, especially the holographic principle, which
states that all information contained in a volume of space
can be represented by data on the surface enclosing that vol-
ume. It proposes that spacetime could be holographic in na-
ture, providing a new insight into the structure of the uni-
verse that challenges our understanding of dimensionality in
physical theories. The holographic principle has heavily in-
spired the AdS/CFT correspondence, which conjectures that a
gravitational theory residing in higher-dimensional space can
be equivalently described by a conformal field theory on its
boundary.

This paper explores black hole thermodynamics through
the tools of statistical mechanics, focusing on entropy, Hawk-
ing radiation, and the holographic principle, with a view on
how black holes bridge classical thermodynamics, statistical
mechanics, general relativity and quantum field theory, high-
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lighting the main open questions and implications of black
hole physics.

II. LAWS OF BLACK HOLE THERMODYNAMICS

The laws of black hole thermodynamics are a set of principles
that reveal certain similarities between black holes and con-
ventional thermodynamic systems. Formulated by Bardeen,
Carter, and Hawking, the laws of black hole thermodynam-
ics appeared to be identical to the laws of thermodynamics if
the quantities involved, such as mass, surface area, and sur-
face gravity, respectively, are treated analogously to energy,
entropy, and temperature. These laws are summarized below,
and the similarities to the three thermodynamics laws are dis-
cussed.

A. Zeroth Law of Thermodynamics

The zeroth law of black hole thermodynamics states that
the surface gravity x of a black hole remains constant across
its event horizon:

Kk = constant on the horizon 2.1)

In thermodynamics, the zeroth law states that if two sys-
tems are in thermal equilibrium with a third, they are in equi-
librium with each other. This defines temperature as a con-
stant quantity in a system that exhibits thermal equilibrium.
In the context of black holes, the zeroth law (of black hole
thermodynamics) implies that surface gravity (analogous to
temperature) is uniform across the event horizon of a station-
ary (non-rotating, unchanging) black hole. This constancy is
essential for defining a black hole’s “temperature” and serves
as a foundation for the subsequent laws, particularly in de-
scribing black holes as thermodynamic entities.

This principle underpins the idea that a black hole’s hori-
zon behaves similarly to the boundary of a thermodynamic
system, in which temperature remains the same throughout
an isolated, equilibrium state. The zeroth law’s role here is
foundational, enabling the analogy between surface gravity
and temperature and thus allowing black holes to be studied
as systems with thermodynamic properties.

B. First Law of Thermodynamics

The first law of black hole thermodynamics establishes a
relation between a black hole’s mass, area, and angular mo-
mentum, analogous to the first law of thermodynamics, which
describes the conservation of energy. For black holes, this law
is expressed as:

dM = 8£dA + G- dL + ©dQ 2.2)
Y

where:

e M is the mass of the black hole, analogous to internal
energy,

* k is the surface gravity of the black hole, analogous to
temperature,

e A is the surface area of the event horizon, analogous
to entropy,

e Qand L represent the angular velocity and angular
momentum, respectively,

¢ & and () represent the electrostatic potential and elec-
tric charge, respectively.

Changes in the black hole’s mass M can be attributed to
changes in its horizon area, angular momentum, or charge.
The surface gravity  plays a role similar to temperature, dic-
tating how changes in the black hole’s horizon area (related to
entropy) affect its energy.

C. Second Law of Thermodynamics

The second law of black hole thermodynamics, often called
the area theorem, states that the total surface area A of a black
hole’s event horizon cannot decrease over time:

dA >0 (2.3)

This is strikingly similar to the second law of thermody-
namics, which states that entropy never decreases in an iso-
lated system. In black hole thermodynamics, the horizon area
A is considered to be a type of entropy, which increases as
the black hole absorbs matter. Proposed by Stephen Hawking,
this principle means that black holes evolve toward states of
higher entropy, identical to thermodynamic systems. The sec-
ond law is not strictly true, as Hawking later predicted that
black holes release energy in the form of radiation, which
in turn causes the black hole to slowly lose mass. In such
cases, the black hole area decreases over time, which contra-
dicts with the second law of black hole thermodynamics. This
paradox forms the basis for many ongoing research into the
quantum mechanics of black holes. The Generalised Second
Law of Thermodynamics was later introduced to maintain the
validity of the second law of thermodynamics.

D. Third Law of Thermodynamics

The third law of black hole thermodynamics states that it is
impossible to reduce a black hole’s surface gravity x to zero
through any physical process. In classical thermodynamics,
the third law implies that reaching absolute zero temperature
is impossible. Here, it suggests that surface gravity, which acts
as an analogue for temperature in black hole thermodynamics,
cannot be eliminated entirely.

This law is particularly relevant when considering ex-
tremal black holes (black holes with the lowest possible tem-
perature and maximum charge or angular momentum). Ex-
tremal black holes have surface gravities close to zero, yet
the third law suggests that a true zero surface gravity state
is unattainable. This implies a theoretical limit on cooling a
black hole and underscores a deeper, possibly quantum-based,
nature of black hole states at extreme conditions.

III. BEKENSTEIN-HAWKING ENTROPY AND

HAWKING TEMPERATURE

Black holes have entropy, which are described by the
Bekenstein-Hawking entropy formula, named after the the-
oretical physicists Jacob Bekenstein and Stephen Hawking.
The formula can be derived using classical arguments|1].
Black holes also have temperature, and it emits radiation
through a process known as Hawking radiation. This section
includes both the classical and quantum derivation of the B-H
entropy and Hawking radiation based on results from classical
thermodynamics, general relativity, and quantum field theory.
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A. Classical Derivation

Rotating charged black holes are described by the Kerr-
Newman metric. If a black hole has the mass M, angular
momentum L and electric charge (), the radius of the inner
(r—) and outer (r) horizons are given by:

o @G

47T€QC4

_GM Giw 3.1)

where
a@=L/Mc (3.2)
The surface area and surface gravity are given as follows:

A=d4n(r] 4+ d®) (3.3)
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These are results of general relativity, and the derivations of
these equations will not be discussed in this article.
Rewriting equation (3.3) in differential form, we obtain

the following expression.
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The outer horizon, 7 is given by equation (3.I). In dif-
ferential form:
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Rearranging this equation to get an expression for dM:
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where

. (0= 4’"‘ is the angular velocity of the black hole.
e O = T‘+Q

egAc?
hole.
We have just derived the first law of black hole thermodynam-
ics. Comparing equation (3.8) with the equation of internal
energy of a thermodynamic system:

is the electrostatic potential of the black

dE =TdS — PdV

It is clear that the latter two terms in , Q-dL+ PdQ, rep-
resents the work done when increasing the black hole’s charge
and angular momentum. Therefore Q-dL+ ®dQ) is the ana-
logue of —PdV/, strongly suggesting that g~ dA is the black
hole analogue of T'dS, (differing with a constant).

Now we have to try and understand the specific relation
S = f(A) between black hole entropy S and the surface area
A. Tt would be reasonable to assume that f(A) is an increas-
ing monotonic function, since entropy never decreases.

Consider functions f(A) such that f(A) = o(A). If
the entropy of a black hole were related to its area in this
manner, it would lead to inconsistencies. Suppose we have
two black holes with areas A1, A, and entropies S1, S2, and
they merge to form a larger black hole. The total entropy of
the system cannot decrease, implying S > S7 + Sa. Since
S = f(A) = o(A), the resulting area A would always ex-
ceed the sum of the initial areas, A > A; + As. For two
massless, uncharged (Schwarzschild) black holes, we could
use Equation 2.2]to see that the final mass would also have to
exceed the combined mass of the original black holes. Yet,
this would contradict the expectation that energy is radiated
as gravitational waves during the merge, making an overall
increase in mass impossible. Thus, an entropy-area relation of
S = o(A) would be physically inconsistent.

The next simplest assumption S = CA, where C'is a
constant, implies a black hole’s entropy is directly propor-
tional to its surface area. This is exactly what Bekenstein pro-
posed: the area A and surface gravity x are the entropy and
temperature of the black hole (with the inclusion of a constant
factor.)

If C' is indeed a constant for a black hole, it’s sensible
to assume that the constant has the same value for all black
holes. Furthermore, since the constant is not a dimension-
less one, we now make a bold assumption that it’s based on
known fundamental physical constants. Given the context of
black holes, it’s plausible that C involves the speed of light ¢
and the gravitational constant G. There’s no need to consider
€0 as no charge is involved in Schwarzchild black holes. Note
that SI base units of entropy contains the unit of temperature
K. Given the involvement of thermodynamics, we also as-
sume that the Boltzmann constant kg is involved. And finally,
C may also be related to the Planck’s constant /. Although it
may seem counter-intuitive for the Planck constant to appear
in a classical derivation, it should be noted that Planck con-
stant also appears in many results of classical statistical me-
chanics. Thermodynamics seems to “predict” the existence of
h.

Combining all of these together:

S =M GR A (3.9)
where ) is a dimensionless constant. Now we use the method
of dimensional analysis to calculate the exact form of the
equation. In SI base units:

e kp has units of kgm? s 2 K1
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* chas units of m s~ 1.

* 7 has units of kgm? s~

* G has units of kg=' m3 s72

* S has units of kgm? s 2 K~

+ A has units of m?
Substituting these values into Equation (3.9), we determine
the values of «, 3, 7, and J, leading to the following expres-
sion for entropy:

Megc®
hG

A (3.10)

B. Quantum Derivation
The metric of a Schwarzchild black hole is as follows:

2
ds® = — (1 — QGM) Adt® + 1L

c2r 2(;]\/1
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+ r2d0?

where dQ? = d#? + sin®60d¢? is the metric on the two-
sphere.

Consider an observer at a point just outside the horizon,
ie.p—07":

2GM 2 p?
r= +
c? 8GM
Substituting this into the Schwarzchild metric, we obtain
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The frame of the observer is constantly accelerating to not fall
into the black hole. The local acceleration is v = <. Cana-
dian theoretical physicist W. Unruh has shown that all uni-
formly accelerating frames will perceive a thermal bath, an

effect in quantum field theory known as the Unruh effect[3|:
h h
T(r) = 2> = "¢
2mckp 2rkBp
This is the temperature just outside the horizon, which is dif-

ferent to the temperature at any point r’, due to gravitational
redshift:
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The temperature at infinity is therefore:

(3.13)

This temperature is also known as Hawking temperature.
Knowing the temperature, We can easily calculate the en-
tropy of the black hole. Note that the heat transfer added to
a black hole is all converted to an increase in its mass, i.e.
dQ = dMc?

dQ  StkpGM 5 ArkpG
=T T e WMe =0

ds dM?>

For Schwarzchild black holes, R = 25'?1 . Therefore,
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IV. HAWKING RADIATION AND THE LIFETIME
OF BLACK HOLES

Hawking predicted that black holes gradually lose mass and
can eventually evaporate through a process called Hawking
radiation[2]], which arises from quantum effects near the event
horizon. Virtual particle pairs form near the horizon, and one
particle may escape while the other falls into the black hole.
To conserve energy, the escaping particle draws energy from
the black hole, reducing its mass. This radiation causes the
black hole to shrink, with the process accelerating as the black
hole gets smaller.

The specific heat for this process is expressed as C' =
+(%2) where M is the mass of the black hole, and d@ is
the heat change (radiated away as Hawking radiation) by the
black hole[4].

2
8nkp GM?2 dM ¢

“.1)

Note that the specific heat is negative: C' < 0. This im-
plies that as the black hole’s mass and size decrease, its tem-
perature increases, and so does the rate of its energy loss. The
rate of energy loss can be calculated by the Stefan-Boltzmann

radiation law:
au/dt

A
where J is the total energy radiated by a unit surface area per
unit time, A is the surface area, U (= Mc?) is the internal en-
ergy, and o is the Stefan-Boltzmann constant, which has the

J=

oT* 4.2)

2,4
exact value of (:'%7’2?2 It follows that
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Integrating both sides, we obtain the lifetime of a black hole:

_ 51207G? v

t
hct

4.3)

According to this formula, an average black hole that weighs
around 10 solar masses has a lifetime of around 2x 107° years.
For comparison, the age of the universe is only 13.8 billion
years, nearly negligible compared the lifetime of a black hole.
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There are other factors to consider here. For a black hole
of the size mentioned above, its Hawking temperature would
be around 6nK, a temperature much lower than the cosmic
background radiation (CMBR), which has a current value of
around 2.7K. Most black holes in the universe today are radi-
ating so slowly that they are absorbing more energy from the
cosmic microwave background radiation (CMBR) than they
are emitting, effectively preventing them from beginning the
process of evaporation.

V. DISCUSSION

Black hole evaporation through Hawking radiation is a slow
process for most of a black hole’s life, as the radiation is weak
for large black holes with low surface gravity. However, as
a black hole loses mass, the process accelerates, leading to a
rapid increase in temperature and radiation output. In the fi-
nal stages of evaporation, the black hole is expected to release
a burst of high-energy gamma rays, potentially detectable as
a significant astrophysical event. Despite theoretical predic-
tions, no such gamma-ray bursts have been observed, possibly
because the remaining black holes in the universe are still far
from reaching this end stage. Hawking radiation appears to
be a purely thermal phenomena and thus contains no informa-
tion about the matter that formed the black hole. This violates
unitarity, a key principle of quantum mechanics. Information
seems to be permanently lost as the object passes through an
event horizon, and this violation is known as the black hole
information paradox.

The holographic principle is a remarkable idea inspired
by the entropy-area relationship of black holes. It has been
proposed that the dynamics within a region of spacetime can
be fully described by data on its surface. Famously quoted
by Susskind “The three-dimensional world of ordinary experi-
ence—the universe filled with galaxies, stars, planets, houses,
boulders, and people—is a hologram, an image of reality
coded on a distant two-dimensional surface.” The holographic
principle partly resolves the black hole information paradox.
In the context of black holes, the holographic principle would

imply that the information about the matter that fell into the
black hole is stored on the event horizon and does not vanish
when the black hole evaporates.

Anti-de Sitter spaces, characterised by a constant nega-
tive curvature, provide an ideal mathematical framework for
studying gravity and field theories in lower-dimensional sys-
tems. These spaces are solutions to Einstein’s equations with
a negative cosmological constant, making them conceptually
distinct from the universe’s observed de Sitter-like expansion.
AdS spaces feature boundary structures that are particularly
well-suited for exploring holographic dualities and other the-
oretical constructs.

Conformal Field Theories describe quantum fields that
are invariant under conformal transformations, which include
scaling and rotations. These symmetries allow CFTs to de-
scribe critical phenomena in condensed matter systems and
quantum systems at high energies. The AdS/CFT correspon-
dence, proposed by Juan Maldacena, provides a duality be-
tween a gravitational theory in an AdS space and a CFT on its
boundary. This correspondence connects quantum field the-
ory and general relativity, offering insights into both the mi-
croscopic structure of spacetime and the behaviour of strongly
interacting quantum systems. The duality has provided tools
for exploring the thermodynamics of black holes, the be-
haviour of quark-gluon plasmas, and even condensed matter
systems. Though its full implications remain to be uncov-
ered, AdS/CFT stands as one of the most significant advances
in theoretical physics, bridging disparate areas of study and
suggesting pathways toward a unified framework for quantum
gravity.

AdS/CFT provides a framework for understanding the
Bekenstein-Hawking entropy of black holes. In this dual-
ity, black holes in AdS spaces correspond to thermal states
in the boundary Conformal Field Theory (CFT). The entropy
of these CFT states, computed using statistical mechanics,
matches the geometric entropy of the AdS black hole. This of-
fers a microscopic explanation for black hole entropy in terms
of degrees of freedom in the dual theory, addressing one of the
long-standing questions in black hole thermodynamics.
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